SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	AUTOMATED CONTROL DESIGN		
Code No.:	ELR 315-6		
Program:	ELECTRICAL TECHNOLOGY		
Semester:	SIX		
Date:	AUGUST, 1986		
Author:	R. A. PEARMAN		

New: _____ Revision: ___ X

APPROVED:

Chairperson

Date

AUTOMATED CONTROL DESIGN

Course Name

ELR 315-6 Course Number

PHILOSOPHY/GOALS:

To provide a sound understanding of the basics of control system analysis and performance standards as applied to linear control systems.

METHOD OF ASSESSMENT (GRADING METHOD):

Written tests at regular intervals.

A -- 80 - 100% B -- 66 - 79% C -- 55 - 65% R -- LESS THAN 50%

Distribution of marks is 70% theory and 30% laboratory.

TEXTBOOKS:

FEEDBACK AND CONTROL SYSTEMS by McDonald and Lowe

COURSE OBJECTIVES

LECTURE	LAB		TOPIC
12	6		Mathematical Modeling
			Methods of writing differential equations of electrical, mechanical, thermal and hydraulic systems Laplace transforms and inverse Laplace transforms Transfer functions Block diagrams
3	3		Time Domain Analysis
		· .	Test signals Steady-state error constants System types Time response of first and second order systems Time response specifications
3	3		Stability Analysis
			Introduction Stability in the s-domain Routh-Hurwitz criteria
3	3		Root Locus Method
			Introduction Properties of the Root Locus Root Locus for systems with time delay Transient response from Root Locus
3	3		Frequency Response Methods
			Introduction Frequency response Bode logarithmic plots Stability margins
6	12	.*	System Performance Improvement
			Introduction Elementary Cascade compensating networks Phase-lead network Bode pilot phase-lead cascade compensation Root locus phase-lead cascade compensation Phase-lag compensation Bode plot lag compensation Root locus lag compensation Lag-lead compensation Root locus lag-lead compensation
			Root locus lag-lead compensation Bode plot lag-lead compensation

Introduction to Robotics

Basic concepts Classification and structure of robotics systems Drives and control systems End-of-arm tooling Robot and controller operation Sensors and interfacing Robot programming

SPECIFIC OBJECTIVES

The student shall be able to:

1. Mathematical Modeling

- 1. Write differential equations describing the operation of
 - a) electrical circuits and components
 - b) mechanical translation systems
 - c) analogous circuits
 - d) mechanical rotation systems
 - e) thermal systems
 - f) hydraulic systems
 - g) dc servomotors
 - h) ac servomotors
- Use Laplace transforms and inverse Laplace transforms to solve differential equations.
- 3. Develop transfer functions and apply block diagram algebra.

2. Time Domain Analysis

- 1. Pescribe mathematically and graphically, step input, ramp input and parabolic input test signals.
- 2. Describe steady-state errors of a control system in terms of the following input functions
 - a) step
 - b) ramp
 - c) parabolic
- 3. Describe and compare the characteristic of type 0, 1 and 2 systems
- 4. Describe the time response of first and second order systems.

3. Stability Analysis

1. Use the Routh-Hurwitz criterion to determine the stability of a system.

4. Root Locus

1. Use the root locus method to determine the stability and transient response of a control system.

5. Frequency Response

1. Use Bode plots to determine the stability of a system.

6. System Performance Improvement

- Use phase-lead networks to reduce phase lag and improve the phase margin of a control system by using Bode plots and root-locus methods.
- 2. Use phase-lag compensation to achieve high gain at low frequencies and reduce the steady-state error by using Bode plots and rootlocus methods.
- 3. Use lag-lead compensation to achieve improvements in both transient and steady-state performance using Bode plots and root-locus methods.

7. Introduction to Robotics

- 1. Recall the advantages of industrial robots and typical industrial and non-industrial applications.
- 2. Recall that industrial robot is a reprogrammable multi-functional manipulator designed to move material, parts, tools or specialized devices through variable programmed motors for the performance of a variety of tasks.
- 3. Recall and explain the terms accuracy, resolution and repeatability.
- 4. Recall that robotic systems are classified as
 - a) according to type of system: point-to-point (PTP) versus continuous path (CP)

 - c) according to the structure of the manipulator: cartesian, cylindrical, spherical or articulated

and be able to describe with the aid of block diagrams and sketches the advantages and limitations of each classification.

- 5. Explain with the aid of sketches and schematics hydraulic and dc servomotor systems and their control and application to robots.
- 6. Recall and explain the characteristics of end-of-arm tooling and discuss the types and applications of end-of-arm tooling such as standard grippers, special purpose grippers and special purpose tools.
- 7. Recall and explain that the potential relationship between the robot, the gripper, the tool-center-point, the workpiece and the universe in which all of these exist are defined by reference frames defined by Cartesian co-ordinates.
- 8. Recall and explain the advantages of using open-loop (non-servo) control of a robot, and be able to discuss the methods of material and external control that are in common use.

- 9. Recall and explain the advantages of using closed-loop (servo) control of a robot and be able to discuss the methods of internal and external control that are in common use.
- 10. Recall and explain with the aid of block diagrams the controller block diagram of

a) a non-servo system and

- b) a servo system
- 11. Recall and explain the requirements for sensors in a work cell and be able to describe typical contact, non-contact and process monitoring devices and their interfacing requirements.

12. Program a robot by either teach pendant or microcomputer.

